$Curriculum \ Vitae$

Dongting Hu

Pronouns: he Email: dongting@student.unimelb.edu.au Website: https://timmy11hu.github.io/

Education

Sep 2014— Jun 2018	Degree: Where: GPA:	Bachelor of Engineering in Mechanical Engineering Donghua University, Shanghai, CN 82.3/100
Mar 2019— Jan 2020	Degree: Where: GPA:	Graduate Diploma in Data Science The University of Melbourne, Victoria, AU 84.9/100 (H1)
Mar 2020— Jul 2021	Degree: Where: GPA:	Master of Science in Data Science The University of Melbourne, Victoria, AU 83.8/100 (H1)
Sep 2021— Dec 2025	Degree: Where: GPA: Principle Co-superv	Doctor of Philosophy in Science The University of Melbourne, Victoria, AU - Supervisor: Dr Mingming Gong risor: Dr Liuhua Peng, Dr Tingjin Chu

Research Interests

I am interested in advanced topics within computer vision and generative models. My work involves exploring methodologies for Neural Radiance Fields, aimed at constructing efficient, high-fidelity volumetric scenes, and developing effective neural scene editing techniques. Currently, my interests lie in generative models and their applications to various computer vision tasks, including large-scale multimodal text-to-image generation, efficient AIGC and Video / 3D generation.

Work Experience

Aug 2024—	Position: Research Intern
Dec 2024	Where: Creative Vision, Snap Inc., Santa Monica, USA
	Worked on high-resolution text-to-image generative models for mobile, focus-
	ing on data preparing, pre-training foundational models, cross-architecture
	knowledge distillation, step distillation and on-device deployment. Enabled
	1024 resolution high-quality image generation on mobile around 1.4 seconds.

Publications

• SnapGen: Taming High-Resolution Text-to-Image Models for Mobile Devices with Efficient Architectures and Training.

D. Hu, J. Chen, X. Huang, H. Coskun, A. Sahni, A. Gupta, A. Goyal, D. Lahiri, R. Singh, Y. Idelbayev, J. Cao, Y. Li, K.-T. Cheng, S.-H. Chan, M. Gong, S. Tulyakov, A. Kag, Y. Xu, J. Ren. Computer Vision and Pattern Recognition (CVPR) 2025.

- Lifting 2D Diffusion Prior for 3D Object Removal via Tuning-Free Latents Alignment. **D. Hu**, H. Fu, J. Guo, L. Peng, T. Chu, F. Liu, T. Liu, M. Gong. Advances in Neural Information Processing Systems (NeurIPS) 2024.
- Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering.
 D. Hu, Z. Zhang, T. Hou, T. Liu, H. Fu, and M. Gong. International Conference on Computer Vision (ICCV) 2023.
- Uncertainty Quantification in Depth Estimation via Constrained Ordinal Regression.
 D. Hu, L. Peng, T. Chu, X. Zhang, Y. Mao, H. Bondell, and M. Gong.
 European Conference on Computer Vision (ECCV) 2022.
- Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario. R. Liu, K. Lam, W. Zhou, S. Wu, J. Zhao, **D. Hu**, M. Gong. IEEE Transactions on Multimedia.
- MF-VITON: High-Fidelity Mask-Free Virtual Try-On with Minimal Input.
 Z. Wan, Y. Xu, D. Hu, W. Cheng, T. Chen, Z. Wang, F. Liu, T. Liu, M. Gong. In Submission.
- Efficient and High-Quality Rendering with 3D Gaussian Prototypes. Z. Gao, **D. Hu**, J. Bian, H. Fu, Y. Li, T. Liu, M. Gong, K. Zhang. In Submission.
- Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching. W. Cai, D. Hu, R. Yin, H. Fu, J. Deng, W. Yang, M. Gong. In Submission.
- Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting. Y. Liu, S. Wijewickrema, D. Hu, C. Bester, S. O'Leary, J. Bailey. In Submission.
- High-Fidelity Face Reenactment via Facial Parametric Conditioned Diffusion Models.
 K. Chen, S. Seneviratne, W. Wang, D. Hu, S. Saha, M. Hasan, S. Rasnayaka, T. Malepathirana, M. Gong, S. Halgamuge.
 In Submission.

Teaching

Aug 2020—	Position: Teaching Assistant
Dec 2023	Where: The University of Melbourne, Victoria, AU
	I served as a casual tutor at the School of Mathematics and Statistics, where
	I assisted with labs, workshops, invigilation, and marking for several courses.
	My responsibilities spanned undergraduate subjects including MAST20005
	(Statistics) and MAST30025 (Linear Statistical Models), as well as postgrad-
	uate subjects such as MAST90082 (Mathematical Statistics), MAST90104
	(Statistical Learning), and MAST90138 (Multivariate Statistics).

Professional Services

- Conference Reviewer: ICCV (2025), KDD (2025), CVPR (2025), ICLR (2025), ECCV (2024, 2023), BMVC (2024, 2023), ECAI (2025, 2024, 2023), AJCAI (2024, 2023)
- Journal Reviewer: TIST, Neural Networks, Frontiers in Computer Science

Academic Talks

• "Uncertainty Quantification in Depth Estimation via Constrained Ordinal Regression", AI TIME, Dec 7, 2022 (online)

Honors and awards

- Melbourne Research Scholarship (2021-2025)
- Science Abroad Travelling Scholarship (SATS), 2023

Technical Skills

- Programming Language: Python, R, JavaScript, C, Java, SQL, MATLAB,
- Framework/Software: Pytorch, Tensorflow, CUDA, Jax, WebGL, Swift CoreML, Ansible, Docker